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Distance searching problem 

 Search problem: 

 Data type 

 The method of comparison 

 Query formulation 

 

 Extensibility: 

 A single indexing technique applied to many specific 

search problems quite different in nature 
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Distance searching problem 

 Traditional search: 

 Exact (partial, range) retrieval 

 Sortable domains of data (numbers, strings) 

 Perspective search: 

 Proximity 

 Similarity 

 Dissimilarity 

 Distance 

 Not sortable domains (Hamming distance, color 

histograms) 
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Distance searching problem 

Definition (divide and conquer): 

 Let D be a domain, d a distance measure on 

objects from D  

 

 Given a set X  D of n elements: 

 

      preprocess or structure the data so that proximity 
queries are answered efficiently. 
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Distance searching problem 

 Metric space as similarity search abstraction 

 Distances used for searching 

 No coordinates – no data space partitioning 

 Vector versus metric spaces 

 

 Three reasons for metric indexes: 

 No other possibility 

 Comparable performance for special cases 

 High extensibility 
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Metric space 

 M = (D,d) 

 Data domain D 

 Total (distance) function d: D  D   (metric function or 

metric) 

 The metric space postulates: 

 Non negativity 

 Symmetry  

 Identity 

 Triangle inequality 
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Metric space 

 Another specification: 

 

 (p1) non negativity 

 (p2) symmetry 

 (p3) reflexivity 

 (p4) positiveness 

 (p5) triangle inequality 

 

),(),(),(,,,

0),(,,

0),(,

),(),(,,

0),(,,

zydyxdzxdzyx

yxdyxyx

xxdx

xydyxdyx

yxdyx











D

D

D

D

D



P. Zezula, G. Amato, V. Dohnal, 

M. Batko: Similarity Search: The 

Metric Space Approach Part I, Chapter 1 10 

Pseudo metric 

 Property (p4) does not hold 

 If all objects at distance 0 are considered as single 

objects, we get the metric space: 

 

 To be proved 

 Since 
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Quasi metric 

 Property (p2 - symmetry) does not hold, e.g. 

 Locations in cities – one way streets 

 

 Transformation to the metric space: 
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Super metric 

 Also called the ultra metric 

 Stronger constraint on (p5) 

 

 

 

 At least two sides of equal length  - isosceles 

triangle 

 Used in evolutionary biology (phylogenetic trees) 
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Foundations of metric space searching 

1. distance searching problem in metric spaces  

2. metric distance measures 

3. similarity queries 

4. basic partitioning principles 

5. principles of similarity query execution 

6. policies to avoid distance computations 

7. metric space transformations    

8. principles of approximate similarity search 

9. advanced issues 
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Distance measures 

 Discrete 

 functions which return only a small (predefined) set of 

values 

 

 Continuous 

 functions in which the cardinality of the set of values 

returned is very large or infinite. 

 



P. Zezula, G. Amato, V. Dohnal, 

M. Batko: Similarity Search: The 

Metric Space Approach Part I, Chapter 1 15 

Minkowski distances 

 Also called the Lp metrics 

 Defined on n dimensional vectors 
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Special cases 

 L1 – Manhattan (City-Block) distance 

 L2 – Euclidean distance 

 L – maximum (infinity) distance 
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Quadratic form distance 

 Correlated dimensions – cross talk – e.g. color 

histograms 

 

 

 M – positive semidefinite matrix n  n 

 if M = diag(w1, … ,wn)  weighted Euclidean distance 
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Example 

 3-dim vectors of blue, red, and orange colors: 

 

 Pure red: 

 Pure orange: 

 Pure blue: 

 

 

 Blue and orange images are equidistant from red 
one 
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Example (continue) 

 Human color perception: 

 Red and orange are more alike than red and blue. 

 Matrix specification: 
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Edit distance 

 Also called the Levenstein distance: 

 minimum number of atomic operations to transform string x 

into string y 

 

 insert character c into string x at position i 

 

 delete character at position i in string x 

 

 replace character at position i in x with c 

 

nii xxxxxixdel  1121),( 

nii xcxxxxcixins  121),,( 

nii xcxxxxcixreplace  1121),,( 
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Edit distance - weights 

 If the weights (costs) of insert and delete operations 

differ, the edit distance is not symmetric. 

 

 Example: winsert = 2, wdelete = 1, wreplace = 1 

 dedit(“combine”,”combination”) = 9 

  replacement e  a, insertion t,i,o,n 

 dedit(“combination”,” combine”) = 5 

  replacement a  e, deletion t,i,o,n 
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Edit distance - generalizations 

 Replacement of different characters can be 

different: a  b different from a  c  

 

 If it is symmetric, it is still the metric: a  b must be 

the same as b  a  

 

 Edit distance can be generalized to tree structures 
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Jaccard’s coefficient 

 Distance measure for sets A and B 

 

 

 Tanimoto similarity for vectors 

 

 

 

  is the scalar product 

  is the Euclidean norm 
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Hausdorff distance 

 Distance measure for sets 

 Compares elements by a distance de 

 

Measures the extent to which each point of the 
“model” set A lies near some point of the “image” set 
B and vice versa. 

 

Two sets are within Hausdorff distance r from each 
other if and only if any point of one set is within the 
distance r from some point of the other set. 
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Hausdorff distance (cont.) 
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Foundations of metric space searching 

1. distance searching problem in metric spaces  

2. metric distance measures 

3. similarity queries 

4. basic partitioning principles 

5. principles of similarity query execution 

6. policies to avoid distance computations 

7. metric space transformations    

8. principles of approximate similarity search 

9. advanced issues 
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Similarity Queries 

 Range query 

 Nearest neighbor query 

 Reverse nearest neighbor query 

 Similarity join 

 Combined queries 

 Complex queries 
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Similarity Range Query 

 

 

 

 range query 

 R(q,r) = { x  X | d(q,x) ≤ r } 

 

… all museums up to 2km from my hotel … 

r 

q 
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Nearest Neighbor Query 

 the nearest neighbor query 
 NN(q) = x 

 x  X, y  X, d(q,x) ≤ d(q,y) 

 

 k-nearest neighbor query 
 k-NN(q,k) = A 

 A  X, |A| = k 

 x  A, y  X – A, d(q,x) ≤ d(q,y) 

 

 

 

… five closest museums to my hotel … 

q 

k=5 
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Reverse Nearest Neighbor 
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… all hotels with a specific museum as a nearest 

cultural heritage cite … 



P. Zezula, G. Amato, V. Dohnal, 

M. Batko: Similarity Search: The 

Metric Space Approach Part I, Chapter 1 31 

Example of 2-RNN 

Objects o4, o5, and o6 

have q between their 

two nearest neighbor. 

o5 

q 

o4 

o6 

o1 

o2 

o3 
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Similarity Queries 

 similarity join of two data sets 

 

 

 

 

 similarity self join  X = Y 
 

…pairs of hotels and museums 

which are five minutes walk 

apart … 
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Combined Queries 

 Range + Nearest neighbors 

 

 

 

 

 Nearest neighbor + similarity joins 

 by analogy 
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Complex Queries 

 Find the best matches of circular shape objects with 

red color 

 

 The best match for circular shape or red color needs 

not be the best match combined!!! 
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The A0 Algorithm 

 For each predicate i 

 objects delivered in decreasing similarity 

 incrementally build sets Xi with best matches till  

 

 

 

 For all  

 consider all query predicates 

 establish the final rank (fuzzy algebra, weighted sets, etc.) 

kXi ii  ||

ii Xo 
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Foundations of Metric Space Searching 

1. distance searching problem in metric spaces  

2. metric distance measures 

3. similarity queries 

4. basic partitioning principles 

5. principles of similarity query execution 

6. policies to avoid distance computations 

7. metric space transformations    

8. principles of approximate similarity search 

9. advanced issues 
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Partitioning Principles 

 Given a set X  D  in M=(D,d) three basic 

partitioning principles have been defined: 

 

 

 Ball partitioning 

 Generalized hyper-plane partitioning 

 Excluded middle partitioning 
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Ball partitioning 

 Inner set:  { x  X  | d(p,x) ≤ dm } 

 Outer set: { x  X | d(p,x) > dm } 

 

p 

dm 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part I, Chapter 1 39 

Multi-way ball partitioning 

 Inner set:   { x  X | d(p,x) ≤ dm1 } 

 Middle set: { x  X | d(p,x) > dm1
  d(p,x) ≤ dm2} 

 Outer set:   { x  X | d(p,x) > dm2 } 

 

p 
dm1 

dm2 
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Generalized Hyper-plane Partitioning 

 { x  X | d(p1,x) ≤ d(p2,x) } 

 { x  X | d(p1,x) > d(p2,x) } 

 

p2 

p1 
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Excluded Middle Partitioning 

 Inner set:  { x  X | d(p,x) ≤ dm -  } 

 Outer set: { x  X | d(p,x) > dm +  } 

 

 

 

 

 

 

 

 Excluded set: otherwise 

 

p 

dm 
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p 

dm 
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Foundations of metric space searching 

1. distance searching problem in metric spaces  

2. metric distance measures 

3. similarity queries 

4. basic partitioning principles 

5. principles of similarity query execution 

6. policies to avoid distance computations 

7. metric space transformations    

8. principles of approximate similarity search 

9. advanced issues 
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Basic Strategies 

 Costs to answer a query are influenced by 

 Partitioning principle 

 Query execution algorithm 

 

 Sequential organization & range query R(q,r) 

 All database objects are consecutively scanned and d(q,o) 

are evaluated. 

 Whenever d(q,o) ≤ r, o is reported on result 

q 3 

R(q,4): 

10 8 1 
…… 
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9 

Basic Strategies (cont.) 

 Sequential organization & k-NN query 3-NN(q) 

 Initially: take the first k objects and order them with respect 

to the distance from q. 

 All other objects are consecutively scanned and d(q,o) are 

evaluated. 

 If d(q,oi) ≤ d(q,ok), oi is inserted to a correct position in 

answer and the last neighbor ok is eliminated. 

q 

3-NN(q): 

1 

…… 
10 8 3 

Answer: 
8 3 1 3 1 1 

1 3 
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Hypothetical Index Organization 

 A hierarchy of entries (nodes) N=(G,R(G)) 

 G = {e | e is object or e is another entry} 

 Bounding region R(G)  covers all elements of G. 

 E.g. ball region: o, d(o,p) ≤ r 

 

 Each element belongs exactly to one G. 

 There is one root entry N. 

 

 Any similarity query Q returns a set of objects 

 We can define R(Q) which covers all objects in response. 

p 

r 
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Example of Index Organization 

 Using ball regions 

 Root node organizes four objects and two ball regions. 

 Child ball regions has two and three objects respectively. 

o1 o2 o3 o4 

o5 o6 o7 o8 o9 

o1 

o5 

o3 

o2 

o4 

o6 
o7 

o8 

o9 
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Range Search Algorithm 

Given Q=R(q,r): 

 Start at the root. 

 In the current node N=(G,R(G)), process all 

elements: 

 object element oj G: 

 if d(q,oj) ≤ r, report oj on output. 

 

 non-object element N’=(G’,R(G’))G 

 if R(G’) and R(Q) intersect, recursively search in N’. 
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Range Search Algorithm (cont.) 

R(q,r): 

 Start inspecting elements in B1. 

 B3 is not intersected. 

 Inspect elements in B2. 

 Search is complete. 

o5 

o6 
o7 

o1 

o3 

o2 

o4 

Response =  o8 , 

o8 

o9 

o9 
B1 

B2  

B3 
o1 o2 o3 o4 

o5 o6 o7 o8 o9 

q 

B3 B2 
B1 
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Nearest Neighbor Search Algorithm 

 No query radius is given. 

 We do not know the distance to the k-th nearest neighbor. 

 To allow filtering of unnecessary branches 

 The query radius is defined as the distance to the current  

 k-th neighbor. 

 Priority queue PR is maintained. 

 It contains regions that may include objects relevant to the 

query. 

 The regions are sorted with decreasing relevance. 
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NN Search Algorithm (cont.) 

Given Q=k-NN(q): 

 Assumptions: 

 The query region R(Q) is limited by the distance (r) to the 

current k-th neighbor in the response. 

 Whenever PR is updated, its entries are sorted with 
decreasing proximity to q. 

 Objects in the response are sorted with increasing distance 
to q. The response can contain k objects at maximum. 

 Initialization: 
 Put the root node to PR. 

 Pick k database objects at random and insert them into 
response. 
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NN Search Algorithm (cont.) 

 While PR is not empty, repeat: 

 Pick an entry N=(G,R(G)) from PR. 

 For each object element oj G: 

 if d(q,oj) ≤ r, add oj to the response. Update r and R(Q). 

 Remove entries from PR that cannot intersect the query. 

 For each non-object element N’=(G’,R(G’))G 

 if R(G’) and R(Q) intersect, insert N’ into PR. 

 

 The response contains k nearest neighbors to q. 
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3-NN(q): 

 Pick three random objects. 

 Process B1 

 Skip B3 

 Process B2 

 PR is empty, quit. 

B1 B2  

B2  B1 

NN Search Algorithm (cont.) 

o1 

o5 

o3 

o2 

o4 

o6 
o7 

o8 

o9 

B1 
B2  

B3 

PR= 

Response=  o8, o1, o3 o8, o1, o4 

Processing:  

o8, o1, o2 

q 

o1 o4 o3 o2 

o5 o6 o7 o8 o9 

B3 B2 
B1 

o8, o9, o1 

Final result 
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Incremental Similarity Search 

 Hypothetical index structure is slightly modified: 
 Elements of type 0 are objects e0. 

 Elements e1 are ball regions (B2, B3) containing only 

objects, i.e. elements e0 . 

 Elements e2 contain 

 elements e0 and e1 , e.g., B1. 

 Elements have associated distance 

 functions from the query object q: 

 d0(q,e0 ) – for elements of type e0. 

 dt(q,et ) – for elements of type et. 

 E.g., dt(q,et)=d(q,p)-r (et is a ball with p and r). 

 For correctness: dt(q,et) ≤ d0(q,e0) 

o1 

o5 

o3 

o2 

o4 

o6 
o7 

o8 

o9 

B1 B2  

B3 
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Incremental NN Search 

 Based on priority queue PR again 

 Each element et in PR knows also the distance dt(q,et). 

 Entries in the queue are sorted with respect to these 

distances. 

 Initialization: 

 Insert the root element with the distance 0 into PR. 
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Incremental NN Search (cont.) 

 While PR is not empty do 

 et  the first element from PR 

 if t = 0   (et is an object) then report et as the next nearest 

neighbor. 

 else insert each child element el of et with the distance 

dl(q,el ) into PR. 
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(o4 ,6) (o2 ,4) (o1 ,3) (o6 ,7) (o3 ,7) (B2 ,0) (B3 ,5) (o4 ,6) (o2 ,4) (o1 ,3) (o9 ,2) (o1 ,3) (o6 ,7) (o3 ,7) (o6 ,7) (o2 ,4) (o4 ,6) (o5 ,5) (B3 ,5) (o3 ,7) (o3 ,7) (o4 ,6) (B3 ,5) (o4 ,6) (B3, 5) (o2 ,4) (B3 ,5) (o4 ,6) (o3 ,7) (o4 ,6) (B3 ,5) (o2 ,4) (o1 ,3) (o1 ,3) (o8 ,1) (o9 ,2) (o1 ,3) (o2 ,4) (B1 ,0) (o3 ,7) (o3 ,7) (o4 ,6) (o3 ,7) (o3 ,7) (o3 ,7) (o4 ,6) (o3 ,7) (o4 ,6) (B3 ,5) (o4 ,6) (o3 ,7) (o4 ,6) (B3 ,5) (o2 ,4) (B3 ,5) (o2 ,4) (o1 ,3) (o2 ,4) (B3 ,5) (o4 ,6) 

B1 B2 o8 o9 o1 

NN(q): 

Incremental NN Search (cont.) 

o5 

o6 
o7 

o1 

o3 

o2 

o4 

o8 

o9 

B1 
B2  

B3 

Response =  

Queue =  

Processing:  

(o3 ,7) 

o8 , o9 , o1 

q 

o4 o3 o2 o1 

o5 o6 o7 o8 o9 

B3 B2 

o2 

, o2 

B3 

(o7 ,8) 

o5 

(o7 ,8) 

, o5 

o4 

(o3 ,7) (o7 ,8) 

, o4 

(o3 ,7) (o7 ,8) 

o6 

, o6 

o3 

(o7 ,8) 

, o3 

o7 

, o7 

B1 
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Foundations of metric space searching 

1. distance searching problem in metric spaces  

2. metric distance measures 

3. similarity queries 

4. basic partitioning principles 

5. principles of similarity query execution 

6. policies to avoid distance computations 

7. metric space transformations    

8. principles of approximate similarity search 

9. advanced issues 
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Avoiding Distance Computations 

 In metric spaces, the distance measure is expensive 

 E.g. edit distance, quadratic form distance, … 

 Limit the number of distance evaluations 

 It speeds up processing of similarity queries 

 Pruning strategies 

 object-pivot 

 range-pivot 

 pivot-pivot 

 double-pivot 

 pivot filtering 
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 An index structure is built over 11 objects {o1,…,o11} 

 applies ball-partitioning 

 

 

 

 

 Range query R(q,r) 

 Sequential scan needs 11 distance computations. 

 Reported objects: {o4 ,o6} 

Explanatory Example 

p1 

p2 

o4 o6 o10 o1 o5 o11 

p3 

o2 o9 o3 o7 o8 q 

o9 

p3 

o11 
o3 

p1 

p2 

o10 

o1 

o5 

o2 

o4 

o7 

o8 

o6 
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Object-Pivot Distance Constraint 

 Usually applied in leaf nodes 

 Assume the left-most leaf is visited 

 Distances from q to o4 ,o6 ,o10 must be computed 

 

 

 

 

 During insertion 

 Distances p2 to o4 ,o6 ,o10 were computed 

p1 

p2 

o4 o6 o10 o1 o5 o11 

p3 

o2 o9 o3 o7 o8 
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o10 
o4 

o6 

Object-Pivot Constraint (cont.) 

 Having d(p2,o4), d(p2,o6), d(p2,o10) and d(p2,q) 

 some distance calculations can be omitted 

 Estimation of d(q,o10) 

 using only distances we cannot determine position of o10  

 o10 can lie anywhere on the dotted circle 

q 

p2 

r 
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Object-Pivot Constraint (summary) 

 Given a metric space M=(D,d) and three objects 

q,p,o D, the distance d(q,o) can be constrained: 

),(),(),(),(),( opdpqdoqdopdpqd 
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 Some structures do not store all distances between 

database objects oi and a pivot p 

 a range [rl, rh] of distances between p and all oi is stored 

 Assume the left-most leaf is to be entered 

 Using the range of distances to leaf objects, we can decide 

whether to enter or not 

 

Range-Pivot Distance Constraint 

p1 

p2 

o4 o6 o10 o1 o5 o11 

p3 

o2 o9 o3 o7 o8 

? 
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 Knowing interval [rl, rh] of distance in the leaf, we 
can optimize 

 

 

 

 

 

 

 Lower bound is rl - d(q,p2) 
 If greater than the query radius r, no object can qualify 

 Upper bound is rh + d(q,p2) 
 If less than the query radius r, all objects qualify! 

Range-Pivot Constraint (cont.) 

o6 
q 

p2 r 

o10 
o4 

rh 

rl 

o6 
q 

p2 r 

o10 
o4 

rh 

rl 

o6 
q 

p2 r 

o10 
o4 

rh 

rl 
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Range-Pivot Constraint (cont.) 

 We have considered one position of q 

 Three are possible: 

q 

p 

o 

rh 

rl p 

o 

rh 

rl 
q 

p 

o 

rh 

rl 

q 
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Range-Pivot Constraint (summary) 

 Given a metric space M=(D,d) and objects p,oD 

such that rl ≤ d(o,p) ≤ rh. Given qD with known 

d(q,p). The distance d(q,o) is restricted by: 

 

hlh rpqdoqdpqdrrpqd  ),(),(}0),,(,),(max{



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part I, Chapter 1 68 

Pivot-Pivot Distance Constraint 

 In internal nodes we can do more 

 Assume the root node is examined 

 

 

 

 

 We can apply the range-pivot constraint to decide 

which sub-trees must be visited 

 The ranges are known since during building phase all data 

objects were compared with p1. 

p1 

p2 

o4 o6 o10 o1 o5 o11 

p3 

o2 o9 o3 o7 o8 

? ? 
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Pivot-Pivot Constraint (cont.) 

 Suppose we have followed the left branch (to p2) 

 Knowing the distance d(p1,p2) and using d(q,p1) 

 we can apply the object-pivot constraint  d(q,p2)[rl’,rh’] 

 

 

 

 

 

 We also know range of distances          

in p2‟s sub-trees: d(o,p2)[rl,rh] 

p1 

p2 

o4 o6 o10 o1 o5 o11 

p3 

o2 o9 o3 o7 o8 

o11 

p1 

p2 

q 

o10 

o1 

o5 

o4 

o6 

r’h 

r’l 
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 Having 
 d(q,p2)[rl’,rh’] 

 d(o,p2)[rl ,rh] 

 

 

 

 

 Both ranges intersect  lower bound on d(q,o) is 0! 

 Upper bound is rh+rh’ 

Pivot-Pivot Constraint (cont.) 

o11 

p1 

p2 

q 

o10 

o1 

o5 

o4 

o6 

r’h 

rl 

rh 

r’l 
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Pivot-Pivot Constraint (cont.) 

 If ranges do not intersect, there are two possibilities. 

 The first is: [rl,rh] is less than [rl’,rh’] 

 The lower bound (left) is rl’ - rh 

 A view of the upper bound rh+rh’ (right) 

 

 

 
 

 

 The second is inverse - the lower limit is rl - rh’ 

p2 

q 

o 

r’h 

r’l 

rl 

rh 

r’l - rh 

p2 

q 

o 

r’h r’l 

rl rh 
rh + r’h 
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Pivot-Pivot Constraint (summary) 

 Given a metric space M=(D,d) and objects q,p,oD 

such that rl ≤ d(o,p) ≤ rh and rl’ ≤ d(q,p) ≤ rh’. The 
distance d(q,o) can be restricted by: 

 

  hhhlhl rroqdrrrr  ),(0,,max
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Double-Pivot Distance Constraint 

 Previous constraints use just one pivot along with 

ball partitioning. 

 Applying generalized hyper-plane, we have two 

pivots. 

 No upper bound on d(q,o) can be defined! 

p2 
q 

o 

p1 

Equidistant line 
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Double-Pivot Constraint (cont.) 

 If q and o are in different subspaces 
 Lower bound is (d(q,p1) – d(q,p2))/2 

 Hyperbola shows the positions with 
constant lower bound. 

 

 Moving q up (so “visual” distance 
from equidistant line is preserved), 
decreases the lower bound. 

 

 If q and o are in the same subspace 

 the lower bound is zero  

p2 
q 

o 

p1 

p2 
q 

o 

p1 

q’ 
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Double-Pivot Constraint (summary) 

 Given a metric space M=(D,d) and objects 

o,p1,p2D such that d(o,p1) ≤ d(o,p2). Given a query 

object qD with d(q,p1) and d(q,p2). The distance 

d(q,o) can be lower-bounded by: 
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Pivot Filtering 

 Extended object-pivot constraint 

 Uses more pivots 

 Uses triangle inequality for pruning 

 All distances between objects and a pivot p are 

known 

 Prune object o  X  if any holds 

 d(p,o) < d(p,q) – r 

 d(p,o) > d(p,q) + r 
q 

r 

p 
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Pivot Filtering (cont.) 

 Filtering with two pivots 

 Only Objects in the dark blue  

 region have to be checked. 

 

 Effectiveness is improved  

 using more pivots. 

 

p1 

p2 

q 

r 

o1 

o2 

o3 
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Pivot Filtering (summary) 

 Given a metric space M=(D,d) and a set of pivots 

 P = { p1, p2, p3,…, pn }. We define a mapping 

function : (D,d)  (n,L∞) as follows: 

 

    (o) = (d(o,p1), …, d(o,pn)) 

 

 Then, we can bound the distance d(q,o) from below: 

 

    L∞((o), (q)) ≤ d(q,o) 
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Pivot Filtering (consideration) 

 Given a range query R(q,r) 

 We want to report all objects o such that d(q,o) ≤ r 

 Apply the pivot filtering 

 We can discard objects for which 

 L∞((o), (q)) > r  holds, i.e. the lower bound on d(q,o) is 

greater than r. 

 The mapping   is contractive: 

 No eliminated object can qualify. 

 Some qualifying objects need not be relevant. 

 These objects have to be checked against the original  

 function d(). 
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Constraints & Explanatory Example 1 

 Range query R(q,r) = {o4,o6,o8} 

 Sequential scan: 11 distance computations 

 No constraint: 3+8 distance computations 

p1 

p2 

o4 o6 o10 o1 o5 o11 
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o2 o9 o3 o7 o8 
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o7 
o8 

o6 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part I, Chapter 1 81 

Constraints & Explanatory Example 2 

 Range query R(q,r) = {o4,o6,o8} 

 Only object-pivot in leaves: 3+2 distance computations 

 o6 is included without computing d(q,o6) 

 o10 ,o2 ,o9 ,o3 ,o7 are eliminated without computing.  
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p2 

o4 o6 o10 o1 o5 o11 
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o2 o9 o3 o7 o8 
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Constraints & Explanatory Example 3 

 Range query R(q,r) = {o4,o6,o8} 

 Only range-pivot: 3+6 distance computations 

 o2 ,o9 are pruned. 

 Only range-pivot +pivot-pivot: 3+6 distance computations 
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o4 o6 o10 o1 o5 o11 
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Constraints & Explanatory Example 4 

 Range query R(q,r) = {o4,o6,o8} 

 Assume: objects know distances to pivots along paths to the 

root. 

 Only pivot filtering: 3+3 distance computations (to o4 , o6 , o8) 

 All constraints together: 3+2 distance computations (to o4 ,o8) 
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o4 o6 o10 o1 o5 o11 
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Foundations of metric space searching 

1. distance searching problem in metric spaces  

2. metric distance measures 

3. similarity queries 

4. basic partitioning principles 

5. principles of similarity query execution 

6. policies to avoid distance computations 

7. metric space transformations   

8. principles of approximate similarity search 

9. advanced issues 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part I, Chapter 1 85 

Metric Space Transformation 

 Change one metric space into another 

 Transformation of the original objects 

 Changing the metric function 

 Transforming both the function and the objects 

 

 Metric space embedding 

 Cheaper distance function 

 User-defined search functions 
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Metric Space Transformation 

  M1 = (D1, d1)  M2 = (D2, d2) 

 

 Function 

 

 

 

 Transformed distances need not be equal 

))(),((),(:, 212211121 ofofdoodoo  D
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Lower Bounding Metric Functions 

 Bounds on transformations 

 Exploitable by index structures 

 

 Having functions d1,d2: D D   

 d1 is a lower-bounding distance function of d2 

),(),(:, 21221121 oodoodoo  D
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Lower Bounding Functions (cont.) 

 Scaling factor 

 Some metric functions cannot be bounded. 

 We can bound them if they are reduced by a factor s 

 

 

 

 

 s·d1 is a lower-bounding function of d2 

 Maximum of all possible values of s is called the optimal 

scaling factor. 
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Example of Lower Bounding Functions 

 Lp metrics 

 Any Lp’ metric is lower-bounding an Lp metric if p ≤ p‟ 

 Let       are two vectors in a 2-D space 

 

 

 

 

 

 L1 is always bigger than L2 
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Example of Lower Bounding Functions 

 Quadratic Form Distance Function 

 Bounded by a scaled L2 norm 

 Optimal scaling factor is 

 

 

 

where i denote the eigenvalues of the quadratic form 

function matrix. 

}{min iioptims 
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User-defined Metric Functions 

 Different users have different preferences 

 Some people prefer car‟s speed 

 Others prefer lower prices 

 etc… 

 

 Preferences might be complex 

 Color histograms, data-mining systems 

 Can be learnt automatically 

 from the previous behavior of a user 
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User-defined Metric Functions 

 Preferences expressed as another 
distance function du 
 can be different for different users 

 Example: matrices for quadratic form distance functions 

 

 Database indexed with a fixed metric db 

 

 Lower-bounding metric function dp 
 lower-bounds db and du 

 it is applied during the search 

 can exploit properties the index structure 
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User-defined Metric Functions 

 Searching using dp 

 search the index, but use dp instead of db 

 Possible, because 
 

 

 every object that would match similarity query using db will 

certainly match with dp 

 False-positives in the result 

 filtered afterwards - using du 

 possible, because 

),(),(:, 212121 oodoodoo bp  D
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Embedding the Metric Space 

 Transform the metric space 

 Cheaper metric function d2 

 Approximate the original d1 distances 

 

 

 Drawbacks 

 Must transform objects using the function f 

 False-positives  

 pruned using the original metric function 

))(),((),( 212211 ofofdood 
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Embedding Examples 

 Lipschitz Embedding 

 Mapping to an n-dimensional vector space 

 Coordinates correspond to chosen subsets Si of objects 

 Object is then a vector of distances to the closest object from 

a particular coordinate set Si 

 

 

 Transformation is very expensive 

 SparseMap extension reduces this cost 
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Embedding Examples 

 Karhunen-Loeve tranformation 

 Linear transformation of vector spaces 

 Dimensionality reduction technique 

 Similar to Principal Component Analysis 

 Projects object o onto the first k < n basis vectors 

 

 

 Transformation is contractive 

 Used in the FastMap technique 
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Foundations of metric space searching 

1. distance searching problem in metric spaces  

2. metric distance measures 

3. similarity queries 

4. basic partitioning principles 

5. principles of similarity query execution 

6. policies to avoid distance computations 

7. metric space transformations    

8. principles of approximate similarity search 

9. advanced issues 
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Principles of Approx. Similarity Search 

 Approximate similarity search over-comes problems 

of exact similarity search when using traditional 

access methods. 

 Moderate improvement of performance with respect to the 

sequential scan. 

 Dimensionality curse 

 Similarity search returns mathematically precise 

result sets. 

 Similarity is often subjective, so in some cases also 

approximate result sets satisfy the user‟s needs. 
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Principles of Approx. Similarity Search 

(cont.) 

 Approximate similarity search processes a query 

faster at the price of imprecision in the returned 

result sets. 

 Useful, for instance, in interactive systems: 

 Similarity search is typically an iterative process 

 Users submit several search queries before being satisfied 

 Fast approximate similarity search in intermediate queries can be 

useful. 

 Improvements up to two orders of magnitude 
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Approx. Similarity Search: Basic Strategies 

 Space transformation 

 Distance preserving transformations 

 Distances in the transformed space are smaller than in the 

original space. 

 Possible false hits 

 Example:  

 Dimensionality reduction techniques such as 

 KLT, DFT, DCT, DWT 

 VA-files 

 We will not discuss this approximation strategy in details. 
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Basic Strategies (cont.) 

 Reducing subsets of data to be examined 

 Not promising data is not accessed. 

 False dismissals can occur. 

 This strategy will be discussed more deeply in the 

following slides. 
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Reducing Volume of Examined Data 

 Possible strategies: 

 

 Early termination strategies 

 A search algorithm might stop before all the needed data has 

been accessed. 

 

 Relaxed branching strategies 

 Data regions overlapping the query region can be discarded 

depending on a specific relaxed pruning strategy. 
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Early Termination Strategies 

 Exact similarity search algorithms are 

 Iterative processes, where 

 Current result set is improved at each step. 

 

 Exact similarity search algorithms stop 

 When no further improvement is possible. 
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Early Termination Strategies (cont.) 

 Approximate similarity search algorithms 

 Use a “relaxed” stop condition that  

 stops the algorithm when little chances of improving the 

current results are detected. 

 

 The hypothesis is that  

 A good approximation is obtained after a few iterations. 

 Further steps would consume most of the total search 

costs and would only marginally improve the result-set. 
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Early Termination Strategies (cont.) 

0,2

0,22

0,24

0,26

0,28

0,3

0,32

0,34

0,36

0,38

0 500 1000 1500

Iteration

D
is

ta
n

c
e



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part I, Chapter 1 106 

Relaxed Branching Strategies 

 Exact similarity search algorithms 

 Access all data regions overlapping the query region and 

discard all the others. 

 Approximate similarity search algorithms 

 Use a “relaxed” pruning condition that  

 Rejects regions overlapping the query region when it 

detects a low likelihood that data objects are contained in 

the intersection. 

 In particular, useful and effective with access 

methods based on hierarchical decomposition of the 

space. 
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Approximate Search: Example 

 A hypothetical index structure 

 Three ball regions 
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Approximate Search: Range Query 
 Given a range query: 

 Access B1 

 Report o1 

 If early termination stopped now, 
we would loose objects. 

 Access B2 

 Report o4 ,o5 

 If early termination stopped now, 
we would not loose anything. 

 Access B3 

 Nothing to report 

 A relaxed branching strategy 
may discard this region – we 
don‟t loose anything. 
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Approximate Search: 2-NN Query 

o11 
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B3 

 Given a 2-NN query: 

 Access B1 

 Neighbors: o1 ,o3 

 If early termination stopped now, 
we would loose objects. 

 Access B2 

 Neighbors: o4 ,o5 

 If early termination stopped now, 
we would not loose anything. 

 Access B3 

 Neighbors: o4 ,o5 – no change 

 A relaxed branching strategy 
may discard this region – we 
don‟t loose anything. 
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Measures of Performance 

 Performance assessments of approximate similarity 

search should consider 

 Improvement in efficiency 

 Accuracy of approximate results 

 Typically there is a trade-off between the two 

 High improvement in efficiency is obtained at the cost of 

accuracy in the results. 

 Good approximate search algorithms should 

 offer high improvement in efficiency with high accuracy in 

the results. 
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Measures of Performance: Improvement 

in Efficiency 

 Improvement in Efficiency (IE) is expressed as 

 the ratio between the cost of the exact and approximate 

execution of a query Q: 

 

 

 

 Cost and CostA denote the number of disk accesses or 

alternatively the number of distance computations for the 

precise and approximate execution of Q, respectively. 

 Q is a range or k-nearest neighbors query. 
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Improvement in Efficiency (cont.) 

 IE=10 means that approximate execution is 10 times 

faster 

 Example: 

 exact execution 6 minutes 

 approximate execution 36 seconds 
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Measures of Performance: Precision and 

Recall 

 Widely used in Information Retrieval as a 

performance assessment. 

 

 Precision: ratio between the retrieved qualifying 

objects and the total objects retrieved. 

 

 Recall: ratio between the retrieved qualifying 

objects and the total qualifying objects. 
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Precision and Recall (cont.) 

 Accuracy can be quantified with Precision (P) and 

Recall (R): 

 

 

 
 S – qualifying objects, i.e., objects retrieved by the precise 

algorithm 

 SA – actually retrieved objects, i.e., objects retrieved by the 

approximate algorithm 
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Precision and Recall (cont.) 

 They are very intuitive but in our context 

 Their interpretation is not obvious & misleading!!! 

 For approximate range search we typically  

 have SA  S 

 Therefore, precision is always 1 in this case 

 Results of k-NN(q) have always size k 

 Therefore, precision is always equal to recall in this case. 

 Every element has the same importance 

 Loosing the first object rather than the 1000th one is the 

same. 
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Precision and Recall (cont.) 

 Suppose a 10-NN(q): 

 S={1,2,3,4,5,6,7,8,9,10} 

 SA1={2,3,4,5,6,7,8,9,10,11}  the object 1 is missing 

 SA2={1,2,3,4,5,6,7,8,9,11}  the object 10 is missing 

 

 In both cases: P = R = 0.9 

 However SA2  can be considered better than SA1. 
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Precision and Recall (cont.) 

 Suppose 1-NN(q): 

 S={1} 

 SA1={2}   just one object was skipped 

 SA2={10000}  the first 9,999 objects were skipped 

 

 In both cases: P = R = 0 

 However SA1  can be considered much better than SA2. 
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Measures of Performance: Relative Error 

on Distances 
 Another possibility to assess the accuracy is the 

use of the relative error on distances (ED) 

 It compares the distances from a query object to objects in 

the approximate and exact results 

 

 

 where oA and oN are the approximate and the actual 

nearest neighbors, respectively. 

 Generalisation to the case of the j-th NN: 
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Relative Error on Distances (cont.) 

 It has a drawback: 

 It does not take the distribution of distances into account. 

 

 Example1: The difference in distance from the query 

object to oN and oA is large (compared to the range 

of distances) 

 If the algorithm misses oN and takes oA, ED is large even if 

just one object has been missed. 

 
q oN oA 
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Relative Error on Distances (cont.) 

 Example 2: Almost all objects have the same (large) 

distance from the query object. 

 Choosing the farthest rather than the nearest neighbor 

would produce a small ED, even if almost all objects have 

been missed. 
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Measures of Performance: Error on 

Position 

 Accuracy can also be measured as the Error on 

Position (EP) 

 i.e., the discrepancy between the ranks in approximate 

and exact results. 

 Obtained using the Sperman Footrule Distance 

(SFD): 

 

 

|X| – the dataset‟s cardinality 

Si(o) – the position of object o in the ordered list Si 
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Error on Position (cont.) 

 SFD computes correlation of two ordered lists. 
 Requires both the lists to have identical elements. 

 For partial lists: Induced Footrule Distance (IFD): 
 

 

 

 

OX – the list containing the entire dataset ordered 
with respect to q. 

SA – the approximate result ordered with respect to 
q. 
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Error on Position (cont.) 

 Position in the approximate result is always smaller 

than or equal to the one in the exact result. 

 SA is a sub-lists of OX 

 SA(o)  OX(o) 

 A normalisation factor |SA||X| can also be used 

 The error on position (EP) is defined as 
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Error on Position (cont.) 

 Suppose |X|=10,000 

 

 Let us consider a 10-NN(q): 

 S={1,2,3,4,5,6,7,8,9,10} 

 SA1={2,3,4,5,6,7,8,9,10,11}  the object 1 is missing 

 SA2={1,2,3,4,5,6,7,8,9,11} the object 10 is missing 

 As also intuition suggests: 

 In case of SA1, EP = 10 / (10  10,000) = 0.0001 

 In case of SA2, EP = 1 / (10  10,000) = 0.00001 
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Error on Position (cont.) 

 Suppose |X|=10,000 

 

 Let us consider a 1-NN(q): 

 S={1} 

 SA1={2}   just one object was skipped 

 SA2={10,000}  the first 9,999 objects were skipped 

 As also intuition suggests : 

 In case of SA1, EP = (2-1)/(110,000) = 1/(10,000) = 0.0001 

 In case of SA2, EP = (10,000-1)/(110,000) = 0.9999 
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Foundations of metric space searching 

1. distance searching problem in metric spaces  

2. metric distance measures 

3. similarity queries 

4. basic partitioning principles 

5. principles of similarity query execution 

6. policies to avoid distance computations 

7. metric space transformations    

8. principles of approximate similarity search 

9. advanced issues 
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Statistics on Metric Datasets 

 Statistical characteristics of datasets form the basis 

of performance optimisation in databases. 

 Statistical information is used for 

 Cost models 

 Access structure tuning 

 Typical statistical information 

 Histograms of frequency values for records in databases 

 Distribution of data, in case of data represented in a vector 

space 
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Statistics on Metric Datasets (cont.) 

 Histograms and data distribution cannot be used in 

generic metric spaces 

 We can only rely on distances  

 No coordinate system can be used 

 Statistics useful for techniques for similarity 

searching in metric spaces are 

 Distance density and distance distribution 

 Homogeneity of viewpoints 

 Proximity of ball regions 
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Data Density vs. Distance Density 

 Data density (applicable just in vector spaces) 

 characterizes how data are placed in the space 

 coordinates of objects are needed to get their position 

 

 Distance density (applicable in generic metric 

spaces) 

 characterizes distances among objects 

 no need of coordinates 

 just a distance functions is required 
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Data Density vs. Distance Density (cont.) 

 Data density  Distance density from the 

object p 

 

x1 

x2 

 

x 

p 
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Distance Distribution and Distance 

Density 

 The distance distribution with respect to the object p 

(viewpoint) is 

 

 

where Dp is a random variable corresponding to the  

distance d(p,o) and o is a random object of the metric 

space. 

 

 The distance density from the object p can be 

obtained as the derivative of the distribution. 
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Distance Distribution and Distance 

Density (cont.) 

 The overall distance distribution (informally) is the 

probability of distances among objects 

 

 

 where o1 and o2 are random objects of the metric space. 
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Homogeneity of Viewpoints 

 A viewpoint (distance distribution from p) is 

different from another viewpoint. 

 Distances from different objects are distributed differently. 

 A viewpoint is different from the overall distance 

distribution. 

 The overall distance distribution characterize the entire set 

of possible distances. 

 However, the overall distance distribution can be 

used in place of any viewpoint if the dataset is 

probabilistically homogeneous. 
 i.e., when the discrepancy between various viewpoints is 

small. 
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Homogeneity of Viewpoints (cont.) 

 The index of Homogeneity of Viewpoints (HV) for a 

metric space M=(D,d) is: 

 

 

 where p1 and p2 are random objects and the discrepancy 

between two viewpoints is 

 

 

  

 where Fpi is the viewpoint of pi 
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Homogeneity of Viewpoints (cont.) 

 If HV(M)  1, the overall distance distribution can 

be reliably used to replace any viewpoint. 
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Proximity of Ball Regions 

 Proximity of two regions is a measure that estimates 

the number of objects contained in their overlap 

 Used in: 

 Region splitting for partitioning 

 After splitting one region, the new regions should share as little 

objects as possible. 

 Disk allocation 

 Enhancing performance by distributing data over several disks. 

 Approximate search 

 Applied in relaxed branching strategy – a region is accessed if 

there is high probability to have objects in the intersection. 
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Proximity of Ball Regions (cont.) 

 In Euclidean spaces, it is easy to obtain 

 compute data distributions 

 compute integrals of data distribution on regions‟ 

intersection 

 In metric spaces 

 coordinates cannot be used 

 data distribution cannot be exploited 

 distance density/distribution is the only available statistical 

information 
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Proximity of Ball Regions: Partitioning 

 Queries usually follow data distribution 

 Partition data to avoid overlaps, i.e. accessing both 

regions. 

 Low overlap (left) vs. high overlap (right) 

p2 
p1 

q 

p2 p1 

q 
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Proximity of Ball Regions: Data Allocation 

 Regions sharing many objects should be placed on 

different disk units – declustering 

 Because there is high probability of being accessed 

together by the same query. 

p2 p1 

q 
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Proximity of Ball Regions: Approximate 

Search 

 Skip visiting regions where there is low chance to 

find objects relevant to a query. 

p2 p1 

q 
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Proximity of Metric Ball Regions 

 Given two ball regions R1=(p1,r1) and R2=(p2,r2), we 

define proximity as follows: 

 

 

 In real-life datasets, distance distribution does not 

depend on specific objects 

 Real datasets have a high index of homogeneity. 

 We define the overall proximity 
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Proximity of Metric Ball Regions (cont.) 

 Overall proximity: 

Triangle inequality: 

Dz ≤ D1 + D2  

Proximity: Probability that an object o 

appears in the intersection. 

p2 p1 

D2 ≤ r2 

o 

r1 
r2 

Dz = z 

D1 ≤ r1 
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Proximity: Computational Difficulties 

 Let D1= d(p1, o), D2= d(p2, o), Dz= d(p1, p2 ) be 

random variables, the overall proximity can be 

mathematically evaluated as 

 

 

 

 

 An analytic formula for the joint conditional density 

   is not known for generic metric spaces. 
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Proximity: Computational Difficulties 

(cont.) 

 Idea: Replace the joint conditional density 

fD1,D2|Dz(x,y|z) with the joint density fD1,D2(x,y). 

 However, these densities are different. 

 The joint density is easier to obtain: 
 

 

 If the overall density is used: 

 

 

 The original expression can only be approximated. 
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Proximity: Considerations (cont.) 

 The joint conditional 

density is zero 

 When x,y and z do not 

satisfy the triangle 

inequality. 

 Simply such distance 

cannot exist in metric 

space. 
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Proximity: Considerations (cont.) 
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 The joint density is not 

restricted 

 Idea: the joint 

conditional density is 

obtained by dragging 

values out of borders of 

the triangle inequality to 

the border. 
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Proximity: Approximation 

 Proximity can be 

computed in O(n) with 

high precision 

 n is the number of 

samples for the integral 

computation of f(x). 

 Distance density and 

distribution are the only 

information that need to 

be pre-computed and 

stored. 
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Performance Prediction 

 Distance distribution can be used for performance 

prediction of similarity search access methods 

 Estimate the number of accessed subsets 

 Estimate the number of distance computations 

 Estimate the number of objects retrieved 

 

 Suppose a dataset was partitioned in m subsets 

 Suppose every dataset is bounded by a ball region 

Ri=(pi,ri), 1≤ i ≤m, with the pivot pi and radius ri 
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Performance Prediction: Range Search 

 A range query R(q,rq) will access a subset bounded 

by the region Ri  if it intersects the query 

 i.e., if d(q,pi) ≤ ri+rq 

 The probability for a random region Rr=(p,r) to be 

accessed is 

 

 

 where p is the random centre of the region, Fq is the q‟s 

viewpoint, and the dataset is highly homogeneous. 

 

  )()(),(Pr qqqq rrFrrFrrpqd 
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Performance Prediction: Range Search 

(cont.) 

 The expected number of accessed subsets is 

obtained by summing the probability of accessing 

each subset: 

 

 

 

provided that we have a data structure to maintain the 

ri’s. 
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Performance Prediction: Range Search 

(cont.) 

 The expected number of distance computations is 

obtained by summing the size of subsets and using 

the probability of accessing as a weight 

 

 

 

 The expected size of the result is given simply as 

 

 

where n is the cardinality of the entire dataset. 
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Performance Prediction: Range Search 

(cont.) 

 Data structure to maintain the radii and the 

cardinalities of all bounding regions in needed 

 The size of this information can become unacceptable – 

grows linearly with the size of the dataset. 
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Performance Prediction: Range Search 

(cont.) 

 Previous formulas can be reliably approximated by 
using the average information on each level of a 
tree (more compact) 

  

  

  

  

  

 where Ml is the number of subsets at level l, arl is the 
average covering radius at level l, and L is the total 
number of levels. 















L

l

qllq

L

l

qllq

rarFMrqRdistances

rarFMrqRsubsets

1

1

1

)()),((

)()),((



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part I, Chapter 1 154 

Performance Prediction: k-NN Search 

 The optimal algorithm for k-NN(q) would access all 

regions that intersect R(q,d(q,ok)), where ok is the 

k-th nearest neighbor of q. 

 The cost would be equal to that of the range query 

R(q,d(q,ok)) 

 However d(q,ok) is not known in advance. 

 The distance density of ok (fOk) can be used instead 

 

 

 The density fOk is the derivative of FOk 
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Performance Prediction: k-NN Search 

(cont.) 

 The expected number of accessed subsets is 

obtained by integrating the cost of a range search 

multiplied by the density of the k-th NN distance 

 

 

 Similarly, the expected number of distance 

computations is 
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Tree Quality Measures 

 Consider our hypothetical index structure again 

 We can build two different trees over the same 

dataset 

o1 
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Tree Quality Measures (cont.) 

 The first tree is more compact. 

 Occupation of leaf nodes is higher. 

 No intersection between covering 

regions. 
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Tree Quality Measures (cont.) 

 The second tree is less compact. 

 It may result from deletion of several objects. 

 Occupation of leaf nodes is poor. 

 Covering regions intersect. 

 Some objects are in the  

 intersection. 
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Tree Quality Measures (cont.) 

 The first tree is „better‟! 

 We would like to measure quality of trees. 

o1 

o5 

o3 

o2 

o4 

o6 o7 

o8 

o9 

o1 

o5 

o3 

o2 

o4 

o6 o7 

o8 

o9 



P. Zezula, G. Amato, V. Dohnal, M. Batko: 

Similarity Search: The Metric Space Approach Part I, Chapter 1 160 

Tree Quality Measures: Fat Factor 

 This quality measure is based on overlap of metric 

regions. 

 

 

 

 Different from the previous concept of overlap 

estimation. 

 It is more local. 

 Number of objects in the overlap divided by the total 

number of objects in both the regions. 
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Fat Factor (cont.) 

 “Goodness” of a tree is strictly related to overlap. 

 Good trees are with overlaps as small as possible. 

 

 The measure counts the total number of node 

accesses required to answer exact match queries 

for all database objects. 

 If the overlap of regions R1 and R2 contains o, both 

corresponding nodes are accessed for R(o,0). 
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Absolute Fat Factor: definition 

 Let T be a metric tree of n objects with height h and 

m ≥ 1 nodes. The absolute fat-factor of T is: 

 

 

 

 

 IC – total number of nodes accessed during n exact 

match query evaluations: from nh to nm 
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Absolute Fat Factor: Example 

 An ideal tree needs to access just one node per 

level. 

 fat(Tideal) = 0             IC=nh 

 The worst tree always access all nodes. 

 fat(Tworst) = 1            IC=nm 
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Absolute Fat Factor: Example 

 IC=11 

 fat(T)=0.2 

 IC=10 

 fat(T)=0 

 Two trees organizing 5 objects: 

 n=5     m=3     h=2 
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Absolute Fat Factor: Summary 

 Absolute fat-factor‟s consequences: 

 Only range queries taken into account 

 k-NN queries are special case of range queries 

 Distribution of exact match queries follows distribution of 

data objects 

 In general, it is expected that queries are issued in dense 

regions more likely. 

 The number of nodes in a tree is not considered. 

 A big tree with a low fat-factor is better than a small tree 

with the fat-factor a bit higher. 
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Relative Fat Factor: Definition 

 Penalizes trees with more than minimum number of 
nodes. 

 Let T be a metric tree with more than one node 
organizing n objects. The relative fat-factor of T is 
defined as: 

 

 
 IC – total number of nodes accessed 

 C – capacity of a node in objects 

 Minimum height: 

 Minimum number of nodes: 

 

 nh Clogmin 

minmin

min 1
)(

hmn

nhI
Trfat C







  


min

1min

h

i iC
nm



P. Zezula, G. Amato, V. Dohnal, 

M. Batko: Similarity Search: The 

Metric Space Approach Part I, Chapter 1 167 

o1 

o5 

o3 

o2 

o4 

o6 
o7 

o8 

o9 

o1 

o5 

o3 

o2 

o4 

o6 
o7 

o8 
o9 

Relative Fat Factor: Example 

 Minimum tree 

 IC=18      h=2      m=4 

 rfat(T)=0      fat(T)=0 

 Non-optimal tree 

 IC=27      h=3      m=8 

 rfat(T)=0.5      fat(T)=0 

 Two trees organizing 9 objects: 

 n=9      C=3      hmin=2      mmin=4 
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Tree Quality Measures: Conclusion 

 Absolute fat-factor 
 0 ≤ fat(T) ≤ 1 

 Region overlaps on the same level are measured. 

 Under-filled nodes are not considered. 

 Can this tree be improved? 

 

 Relative fat-factor 
 rfat(T) ≥ 0 

 Minimum tree is optimal 

 Overlaps and occupations are considered. 

 Which of these trees is more optimal? 
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Choosing Reference Points 

 All but naïve index structures need pivots (reference 

objects). 

 Pivots are essential for partitioning and search 

pruning. 

 Pivots influence performance: 

 Higher & more narrowly-focused distance density with 

respect to a pivot 

 

 

 Greater change for a query object to be located at the most 

frequent distance to the pivot. 
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Choosing Reference Points (cont.) 

 Pivots influence performance: 

 Consider ball partitioning: 

 The distance dm is the most frequent. 

 

 

 

 If all other distance are not very different 

 

 

 Both subsets are very likely to be accessed by any query. 

p 

dm 
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Choosing Reference Points: Example 

 Position of a “good” pivot: 

 Unit square with uniform distribution 

 3 positions: midpoint, edge, corner 

 Minimize the boundary length: 

 len(pm)=2.51 

 len(pe)=1.256 

 len(pc)=1.252 

 The best choice is at the border of space 

 The midpoint is the worst alternative. 

 In clustering, the midpoint is the best. 
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Choosing Reference Points: Example 

 The shortest boundary has the pivot po outside the 

space. 

pm 
pe 

pc 

po 
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Choosing Reference Points: Example 

 Different view on a “good” pivot: 

 20-D Euclidean space 

 Density with respect to a corner pivot is flatter. 

 Density with respect to a central pivot is sharper & thinner. 
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Choosing Good Pivots 

 Good pivots should be outliers of the space 

 i.e. an object located far from the others 

 or an object near the boundary of the space. 

 

 Selecting good pivots is difficult 

 Square or cubic complexities are common. 

 Often chosen at random. 

 Even being the most trivial and not optimizing, many 

implementations use it! 
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Choosing Reference Points: Heuristics 

 There is no definition of a corner in metric spaces 

 A corner object is „far away‟ from others 

 

 Algorithm for an outlier: 

1. Choose a random object 

2. Compute distances from this object to all others 

3. Pick the furthest object as pivot 

 This does not guarantee the best possible pivot. 

 Helps to choose a better pivot than the random choice. 

 Brings 5-10% performance gain 
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Choosing More Pivots 

 The problem of selecting more pivots is more 
complicated - pivots should be fairly far apart. 

 Algorithm for choosing m pivots: 
 Choose 3m objects at random from the given set of n 

objects. 

 Pick an object. The furthest object from this is the first 
pivot. 

 Second pivot is the furthest object from the first pivot. 

 The third pivot is the furthest object from the previous 
pivots. Minimum min(d(p1 ,p3), d(p2 ,p3)) is maximized. 

 … 

 Until we have m pivots. 
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Choosing More Pivots (cont.) 

 This algorithm requires O(3m·m) distance 

computations. 

 For small values of m, it can be repeated several times for 

different candidate sets and 

 the best setting is used. 
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Choosing Pivots: Efficiency Criterion 

 An algorithm based on efficiency criterion: 

 Measures „quality‟ of sets of pivots. 

 Uses the mean distance mD between pairs of objects in D. 

 

 Having two sets of pivots 

 P1={p1, p2,…pt } 

 P2={p’1, p’2,…p’t } 

 P1 is better than P2 when mDP1 > mDP2 
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Choosing Pivots: Efficiency Criterion 

 Given a set of pivots P={p1, p2,…pt } 

 Estimation of mDP for P: 

1. At random choose l pairs of objects {(o1,o’1), (o2,o’2), … 

(ol,o’l)} from database X  D 

2. Map all pairs into the feature space of the set of pivots P 

 (oi)=(d(p1,oi), d(p2,oi),…d(pt,oi)) 

 (o’i)=(d(p1,o’i), d(p2,o’i),…d(pt,o’i)) 

1. For each pair (oi,o’i) compute their distance in the feature 

space: di=L((oi),(o’i)). 

2. Compute mD P as the mean of di :  


li id
l

P
1

1
Dm
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Efficiency Criterion: Example 

 Having P={p1,p2} 

 Mapping used by mDP: 

Original space with d Feature space with L 
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o2 

o1 

2 
1 

p1 

p2 

p2 

p1 
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o2 

o1 

3 3 

2.24 

2.83 
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Choosing Pivots: Incremental Selection 

 Selects further pivots “on demand” 
 Based on efficiency criterion mDP  

 Algorithm: 
1. Select a sample set of m objects. 

2. P1={p1} is selected from the sample as mDP1 is maximum. 

3. Select another sample set of m objects. 

4. Second pivot p2 is selected as: mDP2 is maximum where 
P2={p1,p2} with p1 fixed. 

5. … 

 Total cost for selecting k pivots: 2lmk distances 
 Next step would need 2lm distance, if distances di for 

computing mDP are kept. 
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Choosing Reference Points: Summary 

 Current rules are: 

 Good pivots are far away from other objects in the metric 

space. 

 Good pivots are far away from each other. 

 

 Heuristics sometimes fail: 

 A dataset with Jaccard‟s coefficient 

 The outlier principle would select pivot p such that d(p,o)=1 

for any other database object o. 

 Such pivot is useless for partitioning & filtering! 


